Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Pharm Pharmacol ; 74(11): 1609-1617, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36029199

RESUMO

OBJECTIVES: Evaluating the effects of rosmarinic (RA) and cryptochlorogenic (CGA) acids isolated from Blechnum binervatum extract on stem cell viability, toxicity and the protective effect on oxidative cell damage. METHODS: MTT and LDH methods were employed, using stem cells from teeth. RA and CGA were evaluated at 100, 250 and 500 µM. The negative effect of hydrogen peroxide (H2O2) (200-2200 µM) and the capacity of RA and CGA (10-100 µM) as protective agents were also evaluated. DAPI followed by fluorescent microscopy was employed to photograph the treated and untreated cells. KEY FINDINGS: At all tested concentrations, RA and CGA demonstrated the ability to maintain cell viability, and with no cytotoxic effects on the treated stem cells. RA also induced an increase of the cell viability and a reduction in cytotoxicity. H2O2 (1400 µM) induced >50% of cytotoxicity, and both compounds were capable of suppressing H2O2 damage, even at the lowest concentration. At 100 µM, in H2O2 presence, total cell viability was observed through microscope imaging. CONCLUSIONS: These findings contribute to the continued research into natural substances with the potential for protecting cells against oxidative injury, with the consideration that RA and CGA are useful in the regeneration of damaged stem cells.


Assuntos
Gleiquênias , Peróxido de Hidrogênio , Peróxido de Hidrogênio/toxicidade , Ácido Clorogênico/farmacologia , Estresse Oxidativo , Sobrevivência Celular , Células-Tronco
2.
Braz J Med Biol Res ; 54(9): e11055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133539

RESUMO

Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.


Assuntos
Materiais Biocompatíveis , Ortopedia , Regeneração Óssea , Odontologia , Humanos , Engenharia Tecidual , Tecidos Suporte
3.
Braz. j. med. biol. res ; 54(9): e11055, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1278585

RESUMO

Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.


Assuntos
Humanos , Ortopedia , Materiais Biocompatíveis , Regeneração Óssea , Engenharia Tecidual , Odontologia , Tecidos Suporte
4.
Braz J Med Biol Res ; 53(4): e8993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294700

RESUMO

The central nervous system shows limited regenerative capacity after injury. Spinal cord injury (SCI) is a devastating traumatic injury resulting in loss of sensory, motor, and autonomic function distal from the level of injury. An appropriate combination of biomaterials and bioactive substances is currently thought to be a promising approach to treat this condition. Systemic administration of valproic acid (VPA) has been previously shown to promote functional recovery in animal models of SCI. In this study, VPA was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microfibers by the coaxial electrospinning technique. Fibers showed continuous and cylindrical morphology, randomly oriented fibers, and compatible morphological and mechanical characteristics for application in SCI. Drug-release analysis indicated a rapid release of VPA during the first day of the in vitro test. The coaxial fibers containing VPA supported adhesion, viability, and proliferation of PC12 cells. In addition, the VPA/PLGA microfibers induced the reduction of PC12 cell viability, as has already been described in the literature. The biomaterials were implanted in rats after SCI. The groups that received the implants did not show increased functional recovery or tissue regeneration compared to the control. These results indicated the cytocompatibility of the VPA/PLGA core-shell microfibers and that it may be a promising approach to treat SCI when combined with other strategies.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Traumatismos da Medula Espinal/terapia , Ácido Valproico/administração & dosagem , Animais , Modelos Animais de Doenças , Masculino , Teste de Materiais , Microfibrilas/química , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Engenharia Tecidual/métodos , Tecidos Suporte
5.
Braz. j. med. biol. res ; 53(4): e8993, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1089353

RESUMO

The central nervous system shows limited regenerative capacity after injury. Spinal cord injury (SCI) is a devastating traumatic injury resulting in loss of sensory, motor, and autonomic function distal from the level of injury. An appropriate combination of biomaterials and bioactive substances is currently thought to be a promising approach to treat this condition. Systemic administration of valproic acid (VPA) has been previously shown to promote functional recovery in animal models of SCI. In this study, VPA was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microfibers by the coaxial electrospinning technique. Fibers showed continuous and cylindrical morphology, randomly oriented fibers, and compatible morphological and mechanical characteristics for application in SCI. Drug-release analysis indicated a rapid release of VPA during the first day of the in vitro test. The coaxial fibers containing VPA supported adhesion, viability, and proliferation of PC12 cells. In addition, the VPA/PLGA microfibers induced the reduction of PC12 cell viability, as has already been described in the literature. The biomaterials were implanted in rats after SCI. The groups that received the implants did not show increased functional recovery or tissue regeneration compared to the control. These results indicated the cytocompatibility of the VPA/PLGA core-shell microfibers and that it may be a promising approach to treat SCI when combined with other strategies.


Assuntos
Animais , Masculino , Ratos , Traumatismos da Medula Espinal/terapia , Sistema Nervoso Central/efeitos dos fármacos , Ácido Valproico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Ratos Wistar , Microfibrilas/química , Engenharia Tecidual/métodos , Modelos Animais de Doenças , Tecidos Suporte
6.
Braz J Med Biol Res ; 52(8): e8318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411247

RESUMO

Currently, there is great clinical need for suitable synthetic grafts that can be used in vascular diseases. Synthetic grafts have been successfully used in medium and large arteries, however, their use in small diameter vessels is limited and presents a high failure rate. In this context, the aim of this study was to develop tissue engineering scaffolds, using poly(trimethylene carbonate-co-L-lactide) (PTMCLLA), for application as small diameter vascular grafts. For this, copolymers with varying trimethylene carbonate/lactide ratios - 20/80, 30/70, and 40/60 - were submitted to electrospinning and the resulting scaffolds were evaluated in terms of their physicochemical and biological properties. The scaffolds produced with PTMCLLA 20/80, 30/70, and 40/60 showed smooth fibers with an average diameter of 771±273, 606±242, and 697±232 nm, respectively. When the degradation ratio was evaluated, the three scaffold groups had a similar molecular weight (Mw) on the final day of analysis. PTMCLLA 30/70 and 40/60 scaffolds exhibited greater flexibility than the PTMCLLA 20/80. However, the PTMCLLA 40/60 scaffolds showed a large wrinkling and their biological properties were not evaluated. The PTMCLLA 30/70 scaffolds supported the adhesion and growth of mesenchymal stem cells (MSCs), endothelial progenitor cells, and smooth muscle cells (SMCs). In addition, they provided a spreading of MSCs and SMCs. Given the results, the electrospun scaffolds produced with PTMCLLA 30/70 copolymer can be considered promising candidates for future applications in vascular tissue engineering.


Assuntos
Prótese Vascular , Dioxanos/química , Poliésteres/química , Tecidos Suporte/química , Proliferação de Células , Células Cultivadas/citologia , Células Progenitoras Endoteliais/citologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia
7.
Braz. j. med. biol. res ; 52(8): e8318, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011603

RESUMO

Currently, there is great clinical need for suitable synthetic grafts that can be used in vascular diseases. Synthetic grafts have been successfully used in medium and large arteries, however, their use in small diameter vessels is limited and presents a high failure rate. In this context, the aim of this study was to develop tissue engineering scaffolds, using poly(trimethylene carbonate-co-L-lactide) (PTMCLLA), for application as small diameter vascular grafts. For this, copolymers with varying trimethylene carbonate/lactide ratios - 20/80, 30/70, and 40/60 - were submitted to electrospinning and the resulting scaffolds were evaluated in terms of their physicochemical and biological properties. The scaffolds produced with PTMCLLA 20/80, 30/70, and 40/60 showed smooth fibers with an average diameter of 771±273, 606±242, and 697±232 nm, respectively. When the degradation ratio was evaluated, the three scaffold groups had a similar molecular weight (Mw) on the final day of analysis. PTMCLLA 30/70 and 40/60 scaffolds exhibited greater flexibility than the PTMCLLA 20/80. However, the PTMCLLA 40/60 scaffolds showed a large wrinkling and their biological properties were not evaluated. The PTMCLLA 30/70 scaffolds supported the adhesion and growth of mesenchymal stem cells (MSCs), endothelial progenitor cells, and smooth muscle cells (SMCs). In addition, they provided a spreading of MSCs and SMCs. Given the results, the electrospun scaffolds produced with PTMCLLA 30/70 copolymer can be considered promising candidates for future applications in vascular tissue engineering.


Assuntos
Humanos , Poliésteres/química , Prótese Vascular , Dioxanos/química , Tecidos Suporte/química , Teste de Materiais , Células Cultivadas/citologia , Miócitos de Músculo Liso/citologia , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Células Progenitoras Endoteliais/citologia
8.
Braz J Med Biol Res ; 51(5): e6754, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29590258

RESUMO

Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005-3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion.


Assuntos
Polpa Dentária/citologia , Perfusão , Poliésteres , Células-Tronco/citologia , Tecidos Suporte , Adesão Celular , Técnicas de Cultura de Células , Humanos
9.
Braz. j. med. biol. res ; 51(5): e6754, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889074

RESUMO

Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005-3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion.


Assuntos
Humanos , Polpa Dentária/citologia , Perfusão , Poliésteres , Células-Tronco/citologia , Tecidos Suporte , Adesão Celular , Técnicas de Cultura de Células
10.
Braz J Med Biol Res ; 50(9): e5648, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28793048

RESUMO

The association of bioactive molecules, such as vascular endothelial growth factor (VEGF), with nanofibers facilitates their controlled release, which could contribute to cellular migration and differentiation in tissue regeneration. In this research, the influence of their incorporation on a polylactic-co-glycolic acid (PLGA) scaffold produced by electrospinning on cell adhesion and viability and cytotoxicity was carried out in three groups: 1) PLGA/BSA/VEGF; 2) PLGA/BSA, and 3) PLGA. Morphology, fiber diameter, contact angle, loading efficiency and controlled release of VEGF of the biomaterials, among others, were measured. The nanofibers showed smooth surfaces without beads and with interconnected pores. PLGA/BSA/VEGF showed the smallest water contact angle and VEGF released for up to 160 h. An improvement in cell adhesion was observed for the PLGA/BSA/VEGF scaffolds compared to the other groups and the scaffolds were non-toxic for the cells. Therefore, the scaffolds were shown to be a good strategy for sustained delivery of VEGF and may be a useful tool for tissue engineering.


Assuntos
Ácido Láctico/administração & dosagem , Células-Tronco Mesenquimais/metabolismo , Ácido Poliglicólico/administração & dosagem , Engenharia Tecidual/métodos , Tecidos Suporte , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Nanofibras , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Biomed Mater ; 12(2): 025003, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140340

RESUMO

In severe cases of peripheral arterial disease, tissue loss can occur and the use of vascular grafts can be necessary. However, currently, there are no suitable substitutes for application in small diameter vessels. The aim of this work has been to produce scaffolds with adequate properties for application as vascular substitutes. Polycaprolactone scaffolds were produced by the electrospinning technique. The surface of the scaffolds was functionalized with heparin and vascular endothelial growth factor (VEGF) and their physical-chemical properties were characterized. Human endothelial progenitor cells (EPCs) or mesenchymal stem cells (MSCs) were seeded onto the surface of the scaffolds in order to create an endothelial layer. The electrospun scaffolds exhibited mechanical properties compatible with the native arteries. The presence of heparin prevented blood coagulation on the scaffold surface. The presence of heparin and VEGF favored the adaptation of MSCs and EPCs on the scaffolds in relation to the non functionalized scaffolds. In addition, the EPCs cultivated on the scaffolds maintained the expression of CD31, CD34 and VE-cadherin genes. The results obtained in the present study suggest that electrospun scaffolds functionalized with heparin and VEGF can be applied in vascular tissue engineering. These scaffolds exhibited antithrombogenic properties and favored the development of cells on their surface. The association of heparin and VEGF with electrospun scaffolds increased EPC proliferation, favoring the formation of the endothelial layer and the regeneration of damaged vessels.


Assuntos
Células Progenitoras Endoteliais/citologia , Heparina/administração & dosagem , Tecidos Suporte/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Anticoagulantes/química , Fenômenos Biomecânicos , Prótese Vascular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/fisiologia , Humanos , Teste de Materiais , Neovascularização Fisiológica/efeitos dos fármacos , Doença Arterial Periférica/terapia , Regeneração/efeitos dos fármacos , Engenharia Tecidual/métodos
12.
Braz. j. med. biol. res ; 50(9): e5648, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888995

RESUMO

The association of bioactive molecules, such as vascular endothelial growth factor (VEGF), with nanofibers facilitates their controlled release, which could contribute to cellular migration and differentiation in tissue regeneration. In this research, the influence of their incorporation on a polylactic-co-glycolic acid (PLGA) scaffold produced by electrospinning on cell adhesion and viability and cytotoxicity was carried out in three groups: 1) PLGA/BSA/VEGF; 2) PLGA/BSA, and 3) PLGA. Morphology, fiber diameter, contact angle, loading efficiency and controlled release of VEGF of the biomaterials, among others, were measured. The nanofibers showed smooth surfaces without beads and with interconnected pores. PLGA/BSA/VEGF showed the smallest water contact angle and VEGF released for up to 160 h. An improvement in cell adhesion was observed for the PLGA/BSA/VEGF scaffolds compared to the other groups and the scaffolds were non-toxic for the cells. Therefore, the scaffolds were shown to be a good strategy for sustained delivery of VEGF and may be a useful tool for tissue engineering.


Assuntos
Humanos , Ácido Láctico/administração & dosagem , Células-Tronco Mesenquimais/metabolismo , Ácido Poliglicólico/administração & dosagem , Engenharia Tecidual/métodos , Tecidos Suporte , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Nanofibras
13.
Braz J Med Biol Res ; 49(9): e5319, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509306

RESUMO

Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.


Assuntos
Polpa Dentária/citologia , Terapia por Exercício/métodos , Condicionamento Físico Animal/métodos , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Terapia Combinada , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Locomoção , Masculino , Distribuição Aleatória , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Esfoliação de Dente , Resultado do Tratamento , Fator de Necrose Tumoral alfa/análise
14.
Braz. j. med. biol. res ; 49(9): e5319, 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951695

RESUMO

Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.


Assuntos
Humanos , Animais , Masculino , Condicionamento Físico Animal/métodos , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Polpa Dentária/citologia , Terapia por Exercício/métodos , Fatores de Tempo , Esfoliação de Dente , Ensaio de Imunoadsorção Enzimática , Distribuição Aleatória , Resultado do Tratamento , Ratos Wistar , Terapia Combinada , Recuperação de Função Fisiológica , Citometria de Fluxo , Locomoção
16.
J Biomed Nanotechnol ; 9(4): 710-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23621033

RESUMO

The association of stem cells (SCs) with biomaterials promises to be the protagonist for future regenerative medicine in the treatment of tissue and organ lesions. Stem cells were cultivated in scaffolds constructed by the electrospinning technique, using poly-D,L-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp), which has bioactive components of interest for tissue engineering (TE). Physicochemical analyses were performed, such as morphology, fiber diameter, degradability, residual solvent, roughness, contact angle with water, among others. SCs adhesion, proliferation and scaffold cytotoxicity were also evaluated. Nanofibers without beads and with characteristics similar to the natural extracellular matrix (ECM) in terms of mechanical and topographical properties were obtained. In biological tests it was found that SCs adhered more and had greater viability in the PDLLA/Sp molds, when compared with the PDLLA scaffolds. The scaffolds were shown to be atoxic for the SCs. It can be concluded that the scaffolds developed in this work have the characteristics to be a new biomaterial suitable for use in TE.


Assuntos
Materiais Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/citologia , Microalgas/metabolismo , Nanofibras/química , Spirulina/metabolismo , Engenharia Tecidual , Tecidos Suporte/química , Animais , Biomassa , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Peso Molecular , Nanofibras/ultraestrutura , Poliésteres , Polímeros/farmacologia , Solventes , Espectrometria de Fluorescência
17.
Biomicrofluidics ; 7(4): 44130, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24404063

RESUMO

Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine.

18.
Braz. j. med. biol. res ; 45(2): 125-130, Feb. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-614573

RESUMO

Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10 percent polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6 percent and the viability of mononuclear cells from 99 to 8.38 percent. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.


Assuntos
Humanos , Recém-Nascido , Eletroquímica/métodos , Leucócitos Mononucleares/fisiologia , Células-Tronco Mesenquimais/fisiologia , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular , Citometria de Fluxo , Nanotecnologia/métodos , Álcool de Polivinil/farmacologia , Tecidos Suporte , Veias Umbilicais/citologia
19.
Braz. j. med. biol. res ; 45(1): 49-57, Jan. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-610545

RESUMO

Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10(6) cells diluted in 10 µL 0.9 percent NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6) cells diluted in 150 µL 0.9 percent NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25 percent loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.


Assuntos
Animais , Feminino , Humanos , Ratos , Sangue Fetal/citologia , Leucócitos Mononucleares/transplante , Traumatismos da Medula Espinal/cirurgia , Diferenciação Celular , Regeneração Nervosa , Ratos Wistar , Recuperação de Função Fisiológica , Transplante Heterólogo
20.
Braz J Med Biol Res ; 45(1): 49-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22183246

RESUMO

Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10(6) cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6) cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.


Assuntos
Sangue Fetal/citologia , Leucócitos Mononucleares/transplante , Traumatismos da Medula Espinal/cirurgia , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Regeneração Nervosa , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...